Nat. Neuro.:揭开果蝇超级大脑的秘密
蝇脑只有不到六分之一立方毫米,但苍蝇在飞行时却能大量且精确地处理眼睛接受的信息,其性能胜过超级电脑。为进一步解开蝇脑之谜,德国科学家成功研发了一种能够捕捉蝇脑神经细胞活动的研究方法。
德国马克斯•普朗克神经生物学研究所12日发表公报说,该所研究人员以果蝇为实验对象,用发光二极管显示屏上运动的条状图案刺激其视觉,并应用肌钙蛋白为基础的荧光标记分子TN-XXL来标记某个特定的神经细胞。他们还应用双光子激光显微镜,将其频率调到与显示屏相同的频率,以区分荧光标记分子和显示屏的光线。
研究人员说,这是学界首次成功研发出深入研究蝇脑神经细胞活动机制的方法,下一步将逐一研究蝇脑的约10万个神经细胞。
该研究成果最新发表在英国《自然-神经科学》网络版上。(生物谷Bioon.net)
生物谷推荐原文出处: Nature Neuroscience doi:10.1038/nn.2595
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila
Dierk F Reiff,Johannes Plett,Marco Mank,Oliver Griesbeck& Alexander Borst
In the visual system of Drosophila, photoreceptors R1–R6 relay achromatic brightness information to five parallel pathways. Two of them, the lamina monopolar cells L1 and L2, represent the major input lines to the motion detection circuitry. We devised a new method for optical recording of visually evoked changes in intracellular Ca2+ in neurons using targeted expression of a genetically encoded Ca2+ indicator. Ca2+ in single terminals of L2 neurons in the medulla carried no information about the direction of motion. However, we found that brightness decrements (light-OFF) induced a strong increase in intracellular Ca2+ but brightness increments (light-ON) induced only small changes, suggesting that half-wave rectification of the input signal occurs. Thus, L2 predominantly transmits brightness decrements to downstream circuits that then compute the direction of image motion.
|